
Baxter Catching a Flying Ball

Yichi Zhang1, Jingjun Liu2 and Jiarong Li2

Abstract— We build a robotic ball-catching system from
Rethink Robotics Baxter Robot arm. Unlike previous work
which used physical way to solve the problem, we develop both
physical model and machine learning model to decide where
the robot arm should move to. In the Physical Model, we use
classical mechanics along with transformation of coordinates to
predict the drop point. In Machine Learning Model, we train
Baxter with a bunch of training data so it can react more
quickly and more accurately. Finally, we compare these two
methods and analysis their advantages and disadvantages

I. INTRODUCTION

Let robots perform a sports activity is an excellent realtime
benchmark for perception of dynamic scenes, for motion
planning, control and for action planning. Also, robot do-
ing human activities can help us judge robot’s human-like
performance, study human robot interaction and develop a
more human-like robot.

Catching a thrown ball is not easy neither for humans
nor for robots, which demands highly for a tight interaction
of skills in mechanics, control, planning and visual sensing
to reach the necessary precision in space and time. In
general, a stereo vision system tracks the ball and predicts
the balls trajectory, then the point and time, where and in
which orientation the robot should intercept the ball on
its trajectory, is determined. Then, the robot configuration
to reach the catch point is computed and nally a path is
generated, which brings the robot from its start conguration
to the desired catch conguration.

A. Related Work

In previous work [1], [2], the 4 DOF WAM arm with a
gripper to grasp the ball and an active vision system is used.
The heuristic catch point selection chooses the closest point
of the ball trajectory to the robot base and orients the gripper
perpendicular to the trajectory.

In paper [3], a system with a 5 DOF arm on a humanoid
robot, which only the arm is moving, with a cooking basket
at the end effector for catching the ball and an active vision
system is presented. To lead to a human like movement be-
havior, the inverse kinematics is solved by a neural network.

*This work was supported by Prof. Ruzena Bajcsy and VODAFONE
teaching lab @ UC Berkeley.

1Yichi Author is a student at the Department of Electrical Engineer-
ing and Computer Science, University of California, Berkeley, CA, USA
zhangych1996@berkeley.edu

1Jingjun Author is a student at the Department of Electrical Engineer-
ing and Computer Science, University of California, Berkeley, CA, USA
liujingjun@berkeley.edu

1Jiarong Author is a student at the Department of Electrical Engineer-
ing and Computer Science, University of California, Berkeley, CA, USA
jiarongli@berkeley.edu

A 7 DOF DLR-LWR-II arm with a small basket at the end
effector and a stationary stereo camera and image processing
system built from PAL cameras with 50Hz and standard
PC is illustrated in paper [4]. They create an heuristic to
determined the catch point by balancing: 1) choose a point
far away from the robot to prohibit the robot folding up
and running into the joint limits. 2) choose a point near
the robot to move fast and reach the catch point in time.
Also, they take the orientation of the catching basket opening
be perpendicular to the ball trajectory into account when
calculating the inverse kinematics. Finally, an interpolator
generates the joint paths with a trapezoidal velocity prole
(in joint space).

In [5] the focus is on investigating motion primitives for
human like path generation. The robot is equipped with
a base ball glove to take the end effector orientation into
account. The catch point is chosen to be the intersection
of the ball trajectory with a horizontal plane at a given
height. The main focus of the work [6] is on teleoperated
ball catching.

B. Contributions
We use a humanoid robot Baxter with a basket (only the

arm is moving), a usb HD camera and a standard PC with
Ubuntu. In our work, we not only implement the physical
model to predict the ball trajectory but also using machine
learning model. Then, we compare the results of these two
models and analysis their advantages and disadvantages. We
find out that the machine learning model can get a lower
error rate and a better result.

II. PRELIMINARIES & SYSTEM ARCHITECTURE
We set a separated camera to detect the flying tennis ball.

However, due to the low frequency of our 2D camera (25Hz),
we cannot read the radius of tennis ball and then get the
distance accurately, so we decided to make the ball fly on a
2D plane. Also, we can easily extend it into 3D space. The
camera captures a series of positions and send it to computer.
Following different models, a predict point is calculated and
sent to a fast controller. Finally the robot arm will move
to that position and catch the ball. The paper [7] develop a
distributed system to visual ball tracking trajectory by using
online kinematically real-time optimization. According to
this, [8] presents a real-time perception system for catching
flying balls and [9] describes the result of catching flying
balls.

III. CIRCLE DETECTION
From the image we received from the camera, we extract

the ball trajectory by pushing the RGB image into the HSV



Fig. 1. System architecture

color space and filter out all non-green colors. With the help
of OpenCV, we can read the pixel position of ball in camera
frame.

In physical model, we use the first 3 points as well as their
time intervals for prediction.

In machine learning model, we choose the first 5 points
as a set of training data.

IV. PREDICTION MODEL

A. Physical Model

Physical model is a more practical model as we can apply
it to any system and any condition.

1) Step I: System calibration: In this model, the trans-
formation between coordinates is important. There are two
frames in total: camera frame and robot base frame. Also
there are two representations of the ball position: one in unit
pixel and the other in unit meter.

Firstly, we change the position of pixel unit into me-
ter unit. To do this, we manually put the ball at several
positions with constant distance in pixels and measure the
corresponding distances in meter in camera frame by hand.
Then, the relationship between pixel representation and meter
representation matches.

Secondly, we use AR tags to determine the transformation
from camera frame to robot base frame. We attach an AR
tag on the camera and use tf package. After finding the
transformation matrix, we store it for further calculation.

2) Step II: Calculate physical parameters: After we ob-
tain the pixel coordinates of first three data points and the
time intervals of tennis ball, firstly we transform it into
Cartesian coordinate of camera, then we fit the trajectory
of the ball by a parabola model. We define the following
pipeline to find the prediction point:

The velocity of the ball can be calculated by

vx =
∆x1

∆t1
(1)

vy =
1
2

(
∆y1

∆t1
+

∆y2

∆t2

)
(2)

Total flying time:

ttotal =
2 · ‖vx‖

g
(3)

Target position:

xp = x1, yp = y1 + vy ∗ ttotal (4)

Finally get the target position by coordinate transformation:

tar pos = gi ·
[

xp yp zp 1
]T

(5)

Fig. 2. Physical model

3) Step III: Rules of prediction: Because we need enough
time for robot arm to move ti desired configuration, the
flying time of ball need to be maximized. So we choose
the symmetric point of the first point the camera detected as
the catching position.

4) Step IV: inverse kinematics: With the help of ROS
package pykdl, we can calculate the inverse kinematics of
predicted position and send that to controller.

Fig. 3. Prediction point

The physical model can be extended to any movement in a
fixed conservative force field. With several sample points we
can calculate some physical characteristics of the object, such
as velocity, acceleration. Hence, we can deduce its trajectory
and a prediction can be made.



Fig. 4. Inverse kinematics

B. Machine Learning Model

Theoretically, the physical model can be easily generalized
to any possible parabolic trajectories of the ball because
its predictions depend on the calculation of velocities along
axes. For the same reason, however, it has higher require-
ments on the hardware. High resolution and high speed
camera is required to obtain accurate velocities by computing
the average velocity in a short time interval, and to obtain the
depth of the ball by examining the radius of the circle fitted
in captured images. What’s more, the camera also needs to
be calibrated for its surface is curved due to manufacturing
issues. All these problems take a long time for engineers
to solve. Therefore, this report comes up with the idea that
using machine learning model to complete the task.

This particular case can be modeled into a supervised
learning problem. A general machine learning process in-
cludes collecting data, fitting a model on training data and
then predicting results on new data. The collected data should
contain both feature matrix, which appends every data point
as its rows and each of its column is call a feature, and
its corresponding labels. To fit a model in our case, we
decompose the training process into three steps.
• Determine the reachable set of the baxter arm.
• Grid the reachable set and collect data.
• Fit a particular model using the training data.
1) Step 1: Determine the Reachable Set of the Baxter Arm:

In a two dimensional space, the trajectory of a flying ball is
a parabola. Whatever the direction of the initial velocity of
the ball is, we can always use a 1 dimensional hyper-plane
to intersect those concave parabolas at a certain level. Those
intersections are the positions where the Baxter arm can catch
the ball. Therefore, the reachable set of the Baxter arm can
be defined as a 1 dimensional hyper plane H1, which is
denoted as the blue solid line in the figure.

However, in that case two degrees of freedom of the
end effector in a 2D space can not be taken full advantage
of, thus the range of shooting angles of the ball is over-
limited. To solve this problem, we add another 1 dimensional
hyperplane H2, which is denoted as a blue dashed line that
is perpendicular to the original reachable set H1 to extend

Fig. 5. The Reachable Set of Baxter Arm

the allowable shooting angles. The total reachable set then
will be H = H1∪H2.

Intuitively understanding, the Baxter arm always moves in
a line to catch the flying ball, if possible. When the shooting
angle θ is too large such that the drop point of the ball is
estimated to be exceeding the most backward point that the
arm can reach, Baxter will lift its arm to try to catch the ball
at an earlier position on the parabola trajectory.

Fig. 6. My model

2) Step 2: Grid the Reachable Set & Collect Data: To
guarantee the training data occupies the whole reachable set,
we can mesh H by a certain step size. The step size is
determined by the size of the ball. As long as it is smaller
than the radius of the ball, the Baxter arm can still catch the
ball with that error. In this case we choose 4 cm.

While collecting the data, the end effector of the Baxter
arm moves to a node on the grid, the coordinate of the node
in the Baxter base frame is recorded and appended as a row
of the label matrix. The coordinates of first five points of the
ball along the parabola trajectory are recorded and appended
as a row of the feature matrix. After each node and roughly
every corresponding shooting angle are covered, the data
collection procedure is done. In our case, each feature in the
feature matrix is a position in the pixel coordinate system of
the camera, each label is a position in the Baxter base frame.

This procedure is easy to be generalized to a 3D space.
Only by adding one axis and meshing the two hyper-planes in
the same way as described above, we can extend the method
to a 3D case. Here is some example data points in the feature



matrix and label matrix.

TABLE I
SOME EXAMPLE DATA POINTS IN THE FEATURE MATRIX

576 173 517 155 456 160 396 176 332 193
585 117 543 118 480 123 420 134 367 160
560 278 510 238 456 198 410 170.5 357.5 163

TABLE II
SOME EXAMPLE LABELS IN THE LABEL MATRIX

0.436 -0.654 -0.135
0.395 -0.651 -0.135
0.398 -0.651 0.061

3) Step 3: Fit kNN (k Nearest neighbors) Model: Since the
training data are collected by meshing the whole space, they
evenly disperse the reachable set of the Baxter arm. In this
case, kNN will be a good choice for us to try. The k nearest
neighbors algorithm is designed for regression problems. It
basically computes the Euclidean distances between the test
data point and all data points in the feature matrix, and pick
out top k training data points that have the shortest distances
to the test data point. The label of the test data point is then
the average of the labels of those k training data points. The
value of k is determined by exhaustive search. In this case
k = 5.

The algorithm below shows the procedure of kNN. Denote
d as the number of features, q as the dimension of output
labels, xtest as the test data point and xT

i as the ith row of
the feature matrix.

Input: Data matrix X ∈ Rn×d ;Label matrix y ∈ Rn×q;
Number of neighbors k; Test data point
xtest ∈ R1×d

Output: A target drop position in Baxter base frame
p ∈ R1×q

function X ,y,k,xtest :
Initialize l← blank set {}
while step < k do

index ← argmin
i∈{1,2,...,n}−l

‖xtest − xi‖2
2

l ← l +{index}
end
p ← 1

k ∑ j∈l y j
return p

end function
Algorithm 1: KNN

We have collected 284 training data in total. After applying
kNN algorithm, the final training error is approximately 0.02,
which is 2 centimeters. The validation error is approximately
0.016 (1.6 centimeters). As mentioned before, as long as the
error is smaller than the radius of the tennis ball, which is
between 6.541 centimeters to 6.858 centimeters, the Baxter

arm can catch the ball. Therefore, 1.6 cm validation error
reaches the minimum requirement.

It can also be inferred from the values of two errors that
this is still an underfitting model. Usually training error is
less than or approximately equal to validation error. When
the training error is much smaller than validation error, it
means that the model suffers an overfitting problem. On the
opposite side, when training error is larger, it means the
model is underfitting. Its performance can still be improved
by collecting more data.

V. FAST CONTROLLER IMPLEMENTATION
In order to reach the prediction point in time, a fast and

stable controller is needed for robot arm. After several test,
we decide to use a PD controller with a decaying parameter
Kp on the proportional element. In our design, Kp is initially
large so that the arm can move quickly. It declines to make
the arm stay stable at the prediction point.

Fig. 7. Controller

VI. EXPERIMENTAL EVALUATION
In testing our models, we find that both model have their

advantages and disadvantages.

Physical Model Evaluation

The physical model has some advantages compared with
machine learning model.
• It has good generalization because we do not set limit

on the predict point.
• Baxter arm has a larger reachable set
• Do not need to store too many parameters

However, the behavior of physical model prediction is rela-
tively worse than machine learning model. The success rate
is roughly 3 in 20. We believe the reasons are as follows:
• The prediction position is not very accurate

– we neglect air resistance and assume gravity accel-
eration equals 9.81 ms−2

– The image we captured has some distortion and the
camera need to be calibrated.

– We measured the translation between ball and
camera by hand so there are certain errors in
transformation mapping

• The prediction position is hard to control. Maybe it
would predict an unreachable point.

– Inverse kinematics became unstable because of
larger reachable set.



Fig. 8. Image sequence for physical model (from upper left to lower right)

• It has a high requirement on devices as we need to
determine position of tennis ball between a very small
time interval.

Machine Learning Model Evaluation

Compared with physical model, machine learning model
shows a better accuracy and stability. The success rate is
roughly 7 in 20. Here are its advantages:

• If given enough data, it can predict the dropping point
faster and more accurate. In our project we collect 284
data points

• Because all predictions lie in the convex hull of training
data. So the robot arm would not move to a unreason-
able position, and it is safer and more stable.

• Because we do not need to calibrate camera or measure
any mappings. The complexity of system is reduced.

However, it still has some shortcomings:

• It costs a lot of time to collect data
• According to the model, the robot arm would not move

out of the configuration we set. So it cannot deal with
the trajectory out of reachable set.

• It is hard to implement again on other ball-catching
system as the type of robot arm and position of camera
may change.

Fig. 9. Image sequence for machine learning model (from upper left to
lower right)

VII. CONCLUSIONS

The robot can use either physical way or machine learning
way to catch the flying ball thrown by human. However, the
success rate and stability of machine learning model is better.

ACKNOWLEDGMENT

This project was supported by the lab of course EECS
C106B Robotic Manipulation and Interaction, at UC Berke-
ley. We would like to show our great appreciation to Prof.
Ruzena Bajcsy for all of her support on theories of robotics
and sharing her experience and pearls of wisdom with us
during the course and the project. What’s more, we’d like to
thank Chris Correa and Valmik Prabhu for their assistance
on some technical problems. Thank the lab manager and
engineers at VODAFONE teaching lab for their kind help
on hardware issues.

REFERENCES

[1] B. Hove and J.-J. E. Slotine, “Experiments in robotic catching,” in
American Control Conference, 1991. IEEE, 1991, pp. 380–386.

[2] W. Hong and J.-J. E. Slotine, “Experiments in hand-eye coordination
using active vision,” in Experimental Robotics IV. Springer, 1997, pp.
130–139.

[3] K. Nishiwaki, A. Ionno, K. Nagashima, M. Inaba, and H. Inoue, “The
humanoid saika that catches a thrown ball,” in Robot and Human Com-
munication, 1997. RO-MAN’97. Proceedings., 6th IEEE International
Workshop on. IEEE, 1997, pp. 94–99.



[4] U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schäfer, M. Hahnle,
and G. Hirzinger, “Off-the-shelf vision for a robotic ball catcher,” in
Intelligent Robots and Systems, 2001. Proceedings. 2001 IEEE/RSJ
International Conference on, vol. 3. IEEE, 2001, pp. 1623–1629.

[5] M. Riley and C. G. Atkeson, “Robot catching: Towards engaging
human-humanoid interaction,” Autonomous Robots, vol. 12, no. 1, pp.
119–128, 2002.

[6] C. Smith and H. I. Christensen, “Using cots to construct a high
performance robot arm,” in Robotics and Automation, 2007 IEEE
International Conference on. IEEE, 2007, pp. 4056–4063.

[7] B. Bäuml, T. Wimböck, and G. Hirzinger, “Kinematically optimal
catching a flying ball with a hand-arm-system,” in Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on. IEEE,
2010, pp. 2592–2599.

[8] O. Birbach, U. Frese, and B. Bäuml, “Realtime perception for catching
a flying ball with a mobile humanoid,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on. IEEE, 2011, pp.
5955–5962.

[9] B. Bäuml, F. Schmidt, T. Wimböck, O. Birbach, A. Dietrich, M. Fuchs,
W. Friedl, U. Frese, C. Borst, M. Grebenstein et al., “Catching flying
balls and preparing coffee: Humanoid rollin’justin performs dynamic
and sensitive tasks,” in Robotics and Automation (ICRA), 2011 IEEE
International Conference on. IEEE, 2011, pp. 3443–3444.


